Charuta Kulkarni
Postdoc, The Open University
August 25, 2020

EARNEST: Examining the Agroforestry Landscape Resilience in INdia to inform Social-Ecological Sustainability in the Tropics
The effective management of human-dominated tropical forest landscapes is crucial in the wake of global climate change affecting biodiversity, ecosystem functions, and the livelihoods of billions. Among varied land management practices in the tropics, agroforestry remains one of the most promising, promoting deliberate maintenance of trees on farmlands, facilitating avenues for mitigating climate change and enhancing ecosystem functions. Considering these merits, the Indian Government launched the National Agroforestry Policy (NAP) in 2014, world’s first, nationwide policy with a core idea of increasing the agroforestry area concurrent with the expansion of national forest cover. As one of world’s most populous countries and its fastest growing economies, moving towards “Green India” would be a serious game-changer for this tropical country with positive global environmental implications. The effective implementation of this economically valuable policy falls on the shoulders of Indian Forest Departments (IFDs), who uphold a strict policy of preventing fires in and around forests. Fire is an integral part of forest ecosystem functioning and its strict prevention-suppression could be detrimental to biodiversity. While this scientific evidence emerged from palaeoecology has led to comprehensive fire management and conservation plans in some parts of the world, there is currently a shortfall of evidence-based policymaking in human-dominated tropical landscapes. The disagreement in fire practices in India often instigate serious conflicts between IFDs and local communities that traditionally use fires, hampering implementation and the desired impact of the NAP. In this context, harnessing fossil pollen-based diversity indices (e.g., pollen richness and evenness, and temporal β-diversity), past fire management, the intervals of increased aridity, and land use history, EARNEST examines the synergistic impacts of anthropogenic fires and aridity on local plant diversity in the rainforests of Western Ghats of India, one of world’s biodiversity hotspots supporting the highest population density. By developing a historical perspective, EARNEST deepens fundamental knowledge of tropical agroforestry landscapes and tackles a crucial aspect of the effectiveness of fires in managing these landscapes. It actively resources new knowledge towards designing efficient biodiversity conservation and fire management strategies in the Western Ghats and wet tropics at large. The key message from EARNEST is that for the success of environmental management in any tropical region, it is important to recognise that people are part of the landscape. Fire management and conservation frameworks in the face of future monsoon variability can only be effective if they are planned in tandem with careful incorporation of evidence-based traditional land management approaches.
Project “EARNEST” has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement no. 795557.
Caitlyn Witkowski
Postdoc, University of Bristol
August 18, 2020

Extending CO2 estimates in the geologic record using a chlorophyll-based CO2 proxy
As the concentration of atmospheric carbon dioxide (pCO2) continues to rise along with the increasing demands from our growing population, we need to understand the precise relationship between pCO2 and climate (aka climate sensitivity) to brace for the future. Over the past one million years, pCO2 has shown a striking relationship with temperature, as recorded in air bubbles trapped in ice cores. However, beyond the one-million-year ice core record, we must rely on proxies to reconstruct pCO2, i.e. physically preserved material which reflect an environmental parameter. Developing and calibrating proxies remains a challenge, with different proxies suggesting different values throughout time. To provide geologic context for climate sensitivity, we need to better constrain proxy uncertainty.
Here, we apply this proxy over the mid-Miocene Climatic Optimum (16.9 to 14.7 Ma) for several reasons: 1. It may be an analogue for the near future, 2. It seems to behave differently than other climates in time, and 3. It has highly varied pCO2 estimates during this time. We use a refreshed approach to reconstruct pCO2 from the stable carbon isotopic fractionation that occurs during photosynthesis. Possibly providing a more universal pCO2 proxy (both in time and location) in the geologic record, we develop and test the potential of the organic geochemical compounds that are many by most phytoplankton: phytane, a degradation product of the vital pigment chlorophyll that can be found in all photoautotrophs e.g. plants and algae and cholestane, a degradation product of cholesterol found in all (and only) eukaryotes. This refreshed approach, combined with global temperatures, is used to calculate climate sensitivity. We find that this period is not in fact exceptional and its climate sensitivity is firmly within the standard IPCC estimates, thus resolving the enigma of the warm mid-Miocene.
Deepak Jha
PhD Student, Indian Institute of Science Education and Research
August 11, 2020

Role of Late Quaternary climate and vegetation composition in the evolution of prehistoric humans in India
The Quaternary is known as “Age of Humans” because of the presence of abundant fossil record of Homo species in the geological records. The period has witnessed extraordinary changes in global climate, which resulted in the extinction of many mammalian species and must have controlled or contributed to the evolution of Homo species. Although the fossil records of early Homo species are absent from the Indian subcontinent, varieties of stone tools unearthed from sedimentary deposits of the Quaternary age suggest the presence of tool-making prehistoric humans on the landscape. Based on the study of excavated artefacts and their morphology, it has been suggested that the prehistoric humans of the Indian subcontinent were using the Paleolithic to Neolithic tools. The age of the prehistoric phase varies from global to regional scale and remains a matter of inquisitiveness. Therefore, it is required to have complete control over the age of prehistoric phases before understanding the role of climate on the Homo evolution.
In this direction, we selected the fluvial sections of the Belan valley situated in north-central India that preserved the signature of prehistoric human settlement from Paleolithic (~100 ka) to Neolithic (~3 ka) interval. For the first time, we conducted analyses of oxygen and carbon isotopes in soil carbonates (δ18OSC and δ13CSC) and compound-specific hydrogen and carbon isotopes in leaf wax n-alkanes (δDC29 andδ13CC29) of paleosol from six archaeological sites to understand the climate-cultural relationship. The results suggest several phases of intensified monsoonal rainfall punctuated by drier episodes, which also partly controlled the vegetation composition in the last ~100 ka. Our study reveals the role of climate and vegetation in controlling the prehistoric population or local migration during the Middle Paleolithic to Early Neolithic phase.
Mairin Balisi
Postdoc, La Brea Tar Pits & Museum
August 4, 2000

Ancient Originations, Recent Extinctions: Fossil Insights on Extant Carnivore Biodiversity
How ecological traits influence organismal success is a recurring question in paleobiology, particularly as specialization toward extremes may act differently at various scales: traits benefitting an individual may disadvantage its population, species or clade. For example, the ecological specializations of large body size and hypercarnivory (diet over 70% meat) have evolved repeatedly in mammals; yet large hypercarnivores are thought to be trapped in a macroevolutionary “ratchet”, marching unilaterally toward extinction. I examined the relationship between specialization and success over the past 40 million years in North American canids (dogs), a group with considerable ecomorphological disparity and a dense fossil record. Across all canids, a nonlinear relationship emerged between species duration and carnivory: species on either end of the carnivory spectrum tend to have shorter durations than middling species. In two of three canid subfamilies, large-hypercarnivore diversification appears constrained at the clade level, biasing specialized lineages to extinction. However, despite these shorter durations and elevated clade extinction, large hypercarnivores were not disadvantaged at the species level for most of canid history. Extinction was size- and carnivory-selective only at the Pleistocene-Holocene boundary 11,000 years ago, when large-scale biotic and abiotic impacts precipitated the rise of modern carnivore communities primarily comprising fewer predators and smaller species. This trophic and body-size downgrading has continued at the microevolutionary level, producing ecomorphological shifts perceptible in carnivoran species surviving to the modern-day.
Emma Dunne
Postdoc, University of Birmingham
July 28, 2020

Decoding Deep Time Diversity: Physical, Human & Environmental Drivers of Diversity in the Fossil Record
The fossil record is our window into past worlds and provides critical insights into organisms’ responses to past environmental change. Yet, the fossil record is notoriously incomplete and uneven, impacting our ability to interpret the true drivers of biodiversity patterns in deep time. In this talk, Emma will draw on her own research into Palaeozoic and Mesozoic tetrapods (four-limbed beasties) to explore the various physical (geological) and human factors that bias the fossil record, as well as quantitative ways these biases can be mitigated in order to reveal ‘true’ patterns of past diversity. With these biases revealed, she will then explore the environmental changes that drove tetrapod diversity during two key periods of their evolution: first, the emergence of vertebrate life onto land in the late Palaeozoic, and finally, the establishment of modern ecosystems and rise of dinosaurs during the early Mesozoic.
Pedro Monarrez
Postdoc, Stanford University
July 21, 2020

.
Alternating Macroevolutionary Regimes in Phanerozoic Marine Animal Body Size
Extinction selectivity is key in predicting which groups of organisms are likely to die out during a major extinction event. This predictive power of extinction assumes that extinction selectivity does not change from background intervals during mass extinction events. The traits that enhanced the chances of survival of taxa during background intervals, however, have at times failed to protect them during a mass extinction event, as the rules of macroevolution changed. In other words, a mass extinction can represent a switch to a distinct macroevolutionary regime from background processes. Moreover, this idea of alternating macroevolutionary regimes between background processes and mass extinctions is not limited to just extinction; origination dynamics are equally important to long-term evolutionary outcomes of pre- and post-mass extinction events. Thus, testing between these possibilities is a fundamental challenge with possible profound implications not only for understanding the origins of the modern biosphere but also for predicting the consequences of the current biodiversity crisis. The evolution of animal body size represents an ideal metric with which to test for the alternation of macroevolutionary regimes, as it scales with important aspects of organismal biology. Using a dataset of marine genera with body size data ranging from the Early Ordovician through Pleistocene, we test for the alternation of macroevolutionary regimes between background intervals and the “Big Five” mass extinction events using capture-mark-recapture approaches. We find that differences between background and mass extinction are more pronounced for origination than for extinction. Thus, the differences in macroevolutionary regimes between background and mass extinctions may be more pronounced during recovery intervals than during mass extinction events themselves.
Neil Brocklehurst
Postdoc, Oxford University
July 7, 2020

The origin of herbivory in tetrapods: the founding of modern ecosystems
The origin of herbivory in tetrapods (limbed vertebrates) was a crucial event in the establishment of terrestrial vertebrate ecosystems. By allowing access to the vast resource represented by plants, it led to considerable changes in patterns of trophic interactions on land. This ultimately gave rise to the first modern style of terrestrial ecosystems, where large numbers of vertebrate herbivores support a relatively small number of top carnivores, during the late Paleozoic.
Terrestrial floras appear to have been “architecturally” modern by the end of the Devonian, with lignified forests, a shrubby understory and a diverse array of herbaceous plants. However, the evolution of terrestrial herbivorous animals lagged considerably behind this and until the late Carboniferous almost all primary consumers in these ecosystems were detritivorous invertebrates. Even following the first appearance of high-fibre herbivorous tetrapods, these remain rare relative to large macro-predators. Instead, there was a greater link between terrestrial and aquatic ecosystems, with a diverse array of amphibians moving primary productivity from water to support large carnivores. It wasn’t until the Middle Permian crash in amphibian diversity and abundance that more modern terrestrial ecosystems appeared. The establishment of these ecosystems directly impacted on plant evolution. At the local scale the appearance of tetrapod herbivores constrained plant diversity throughout the Permian. This constraint, coinciding with the appearance of smaller, more selective hebivores, is consistent with patterns observed in modern terrestrial ecosystems. This provides an illustration of the potential for fossil data to test predictions of ecological interactions first observed in extant ecosystems.
Heather Jones
PhD, Penn State
June 30, 2020

Size and shape variation in the calcareous nannoplankton genus Braarudosphaera following the Cretaceous-Paleogene (K-Pg) mass extinction: clues as to its evolutionary success
Calcareous nannoplankton (which includes the coccolithophores), have been dominant primary producers in the surface oceans since the late Triassic. The largest mass extinction event in their evolutionary history occurred following the bolide impact at the Cretaceous-Paleogene (K-Pg) boundary ~66.0 Ma, which led to the elimination of over 90% of nannoplankton species. One of the only surviving genera of the K-Pg mass extinction was Braarudosphaera: a nannolith family which unlike the coccolithophores precipitates pentagonal calcite plates (pentaliths). B. bigelowii, the only species of Braarudosphaera to span the K-Pg boundary, is still present (albeit rare) in the modern ocean and forms geographically and temporally restricted blooms throughout geologic time, including in the earliest Paleocene. Morphometric and molecular data indicate that at least four genetically distinct B. bigelowii morphotypes are present in the modern ocean. At present, it is uncertain whether these morphotypes have disparate eco-physiological tolerances that have allowed them to readily adapt to varying environmental conditions. For the first time, we assess changes in both the size and shape of Braarudosphaera pentaliths following the K-Pg mass extinction event at three sites with early Paleocene Braarudosphaera blooms [the Chicxulub impact crater (Mexico), Brazos River (USA), and Agost (Spain)]. Using these data, we assess the role of morphotypic variation within the highly unstable post-impact environment in a range of different marine settings. Our results show that disparate Braarudosphaera morphotypes were dominant in the Gulf of Mexico compared to the paleo-Tethys, likely due to regional environmental differences. In addition, we provide evidence that the dominant Braarudosphaera morphotypes shifted, and that new forms evolved, in response to both local and global environmental change. This ability to rapidly adapt to unstable environments likely helped Braarudosphaera survive the K-Pg extinction, and explains why this lineage has enjoyed such a long evolutionary history.
Laura Haynes
Postdoc, Rutgers University
June 23, 2020

The Seawater Carbon Inventory at the Paleocene-Eocene Thermal Maximum
56 million years ago, the Earth underwent a rapid climate change event called the “Paleocene-Eocene Thermal Maximum” (PETM). Sedimentary records show that a massive amount of carbon was released into the atmosphere, causing ocean acidification, warming, and a widespread extinction of deep-sea organisms. To help quantify ocean acidification at the PETM, we are using the boron content (the B/Ca ratio) of the shells of fossilized foraminifera as a proxy for past ocean pH and carbon content. I will present new calibrations for the B/Ca proxy that we have created by growing living planktic foraminifera in seawater chemistry analogous to that of the Paleogene and simulating severe ocean acidification. Using our new calibrations, I will show that the B/Ca proxy supports the theory that volcanic carbon emissions were a major driver of PETM warming.